If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-133=0
a = 9; b = 0; c = -133;
Δ = b2-4ac
Δ = 02-4·9·(-133)
Δ = 4788
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4788}=\sqrt{36*133}=\sqrt{36}*\sqrt{133}=6\sqrt{133}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{133}}{2*9}=\frac{0-6\sqrt{133}}{18} =-\frac{6\sqrt{133}}{18} =-\frac{\sqrt{133}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{133}}{2*9}=\frac{0+6\sqrt{133}}{18} =\frac{6\sqrt{133}}{18} =\frac{\sqrt{133}}{3} $
| x/2=6/x+2 | | 16+6.5x=10+7.50x | | 16w+20=70+15w | | 5-4x=4x+12 | | x/7+9=-6 | | z/9-12=3 | | 4x^2-6x-32=0 | | 25t^2-70t+48=0 | | 9m-19=91 | | 3x^/2+43=139 | | 5x^/3+61=121 | | 0=-4.867x^2+4.564x+2.083 | | 3x+9-4x-12+5x=-19 | | 4x+3x=16x | | -2x-19=0 | | 6x-22=4x-2 | | 72/3y+11=15 | | a^+6/2=11 | | 8x-4x=20+10 | | 3x^2-6x=60 | | 3x-2x=2x+15 | | 6(1+6p)-4(4p-2)=54 | | 5(-7-6b)-4(3b+8)=67 | | -8(5-7p)=-40+2p | | -9-5n=(6n+5) | | -1+7n=11+5 | | -16-8x+1-5x=5x+3 | | 8(2+2x)=112 | | -3(x+2)=3(2x-2)+5 | | (2x+3/5)-5x/7=1 | | 2(x+4)-3(x+2)=x+7 | | 50=-0.2x^2+2x+45 |